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Introduction

The design of efficient chiral promoters for enantioselective
1,2-additions of organometallic reagents to prochiral carbo-
nyl compounds is eminent in modern organic chemistry,[1]
and organozinc complexes are highly promising catalysts.[2]
Noyori et al. reported detailed experimental[3] and compu-
tational[4] studies of DAIB [(2S)-3-exo-(dimethyl-

amino)isoborneol, Scheme 1] catalyzed dialkylzinc, ZnR2
(R=Me, Et), additions to benzaldehyde.

The enantioselective step was found to proceed through
“anti” and “syn” µ-O-transition structures (Scheme 2). We
have recently shown that µ-O-transition structure models
can be successfully employed to understand enantio-
selectivities with other chiral β-aminoalcohols, e. g., pro-
line and 1,2-diphenylethane derivatives.[5]

Extensive studies by Noyori et al. have identified
monomeric zinc chelate complexes as catalysts in DAIB-
promoted dialkylzinc additions to aldehydes, while the
dimeric catalysts are unreactive.[6] The equilibrium between
monomeric and dimeric zinc chelate complexes (Scheme 1)
was found to be crucial for the reactivity of the catalysts
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and provides the basis for chirality amplification pheno-
mena.[6d-f, 7]

A huge number of chiral chelating ligands has been syn-
thesized and applied in enantioselective additions of
organozinc reagents to aldehydes,[2] but ligands with short
synthetic routes are still desirable. An efficient one step ad-
dition of ortho-lithioanisole to (-)-fenchone yields the chiral
chelating ligand 1 (Scheme 3). We have recently reported the
X-ray crystal structure (Figure 1) of the dimeric chiral me-
thyl zinc chelate complex of 1, {methylzinc(1R,2R,4S)-2-
endo-oxido-2-exo-(2-methoxyphenyl)-1,3,3-trimethyl-
bicyclo[2.2.1] heptane}2 (2)2, which shows striking similari-
ties with Noyori’s DAIB based catalyst (Scheme 1).[8]

We here present a molecular modeling study (ONIOM,
[9] RHF/LANL2DZ[10] : UFF[11]) on monomeric and
dimeric 2 as well as its derivatives. Based on these computa-
tions we analyze relationships between geometrical details
and relative reactivities of the complexes. Our study should

provide helpful tools for a rational catalyst design in alkylzinc
additions to aldehydes.

Results and discussion

Our modular approach to chiral chelating ligand systems al-
lows the efficient introduction of ortho-substituents (El) to
modify both catalyst reactivity and selectivity,[12] as dem-
onstrated in Scheme 3.

The O-Zn polarity in 2 provides the basis for  its
dimerization to (2)2 (Figure 1). The polarity of the Oδ–-Znδ+

unit in 2 can be visualized by an electrostatic potential plot,
showing red (δ–) and blue (δ+) areas at O and Zn, respec-
tively (Figure 2).[13]

To predict relative reactivities of 2 and  its derivatives as
catalysts in dialkylzinc additions to aldehydes and to select
the most promising catalyst, monomer-dimer equilibria were
computed for each species with El= H (2), CH3 (2-Me),
C(CH3)3 (2-Bu) and Si(CH3)3 (2-Si) (Scheme 4). The stronger
the equilibrium shifts towards the monomer, the higher is the
predicted reactivity of the catalyst.

Morokuma’s ONIOM method,[9] implemented in
GAUSSIAN 98[14] was used for geometry optimizations and
frequency computations. The inner core of the complexes
was computed ab initio (RHF/LanL2DZ) while for the rest
of the structure Rappé’s universal force field (UFF)[11] was
employed (Scheme 5). Hydrogen atoms were used to satu-
rate the valences between the layers.

According to the computed equilibria (Table 1, Scheme
4), the least stable dimer is formed by 2-Bu, followed by 2-
Si. Complexes 2 and 2-Me give rise to more stable dimers
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Figure 1 X-ray crystal structure of (2)2. Hydrogen atoms are
omitted for clarity [8]

and hence are less reactive catalysts (Table 1). Which struc-
tural effects parallel the lower dimer stability of 2-Bu and 2-
Si relative to 2 and 2-Me?

A potential dimer stabilizing factor arises from π-stack-
ing of the two phenylene moieties, as is evident in the X-ray
crystal structure of (2)2 (Figure 1). Shortest interring Caryl-
Caryl distances are apparent between C(H) atoms in ortho-po-
sition relative to the methoxy groups (3.50 Å, Table 2, Scheme
4). Only slightly longer Caryl-Caryl distances are computed for
(2)2 and  its methyl derivative (2-Me)2. However, trimethyl-
silyl and t-butyl substitution in (2-Si)2 and (2-Bu)2 strongly
increase the interring Caryl-Caryl distances and hence destabilize
the dimeric structures. The largest interring Caryl-Caryl dis-
tance is computed for (2-Bu)2, which also exhibits the lowest
stability (Scheme 4).

Bond distances in the central Zn2O2 rings of the dimeric
structures correspond to the lower stabilities of (2-Bu)2 and
(2-Si)2 relative to (2) and (2-Me)2. The dimer forming Zn-O
distances are significantly shorter in the unsubstituted and
methyl substituted species than for (2-Bu)2 and (2-Si)2 (Ta-
ble 2, Scheme 4). In contrast, internal Zn-O distances are
much shorter for the less stable dimers (2-Bu)2 and (2-Si)2
than for the more stable species (Table 2, Scheme 4). The
longest dimer forming and the shortest internal Zn-O dis-
tance are apparent in the most unstable complex (2-Bu)2.
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Table 1 Total (a.u.) and relative (kcal·mol–1) energies of monomeric and dimeric zinc chelate complexes, ONIOM (RHF/
LanL2DZ:UFF), Scheme 5 [a]

monomer dimer rel.[b]

2 -178.38746 (273.4) -356.82767 (551.2) -33.1 (-28.7)
2-Me -178.37597 (291.2) -356.80727 (588.1) -34.7 (-29.0)
2-Bu -178.34885 (345.9) -356.71862 (703.7) -13.1 (-1.2)
2-Si -178.38075 (337.4) -356.79500 (684.4) -21.0 (-11.4)

[a] Zero point energies (ZPE, unscaled, kcal·mol-1) and ZPE
corrected relative energies are given in parentheses. All com-
puted structures were fully optimized and characterized by
frequency computations as minima

[b] Relative energies of monomers and dimers are computed
according to Scheme 4, negative energies correspond to
exothermic dimerizations.

Scheme 4Monomer-dimer equilibrium for zinc chelate complexes. El = H:2 (2)2;
El = Me: 2-Me (2-Me)2; El = t-Bu: 2-Bu (2-Bu)2; El = SiMe3:2-Si (2-Si)2
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The (H3C)-O-Caryl-Caryl dihedral angle (Scheme 4), i. e.
the tilt of the methoxy groups out of the aryl planes,[15] is an
other geometrical measure for the stability of dimeric chelate
complexes. The methoxy groups tilt significantly more out
of the aryl planes for the bulky trimethylsilyl and t-butyl sub-
stituents in (2-Si)2 and (2-Bu)2 than for the methyl or
unsubstituted species (2-Me)2 and (2)2 (Table 2). As the Caryl-
Si bond is longer than the Caryl-C bond, the trimethylsilyl
moiety is situated more remote than the t-butyl group and

effects less the methoxy orientation. Hence, the largest de-
viation from methoxy-aryl coplanarity is found for (2-Bu)2.

Conclusions

Our computational analyses of monomer-dimer equilibria of
fenchone-based methylzinc chelate complexes predict in-
creased monomer formation for bulky t-butyl (2-Bu) and
Si(CH3)3 (2-Si) substituents in the ortho-position of 2. This
higher preference of monomers predicts an increased cata-
lyst reactivity of 2-Si and 2-Bu in dialkylzinc additions to
aldehydes relative to 2. These monomer-dimer equilibria as
measure of reactivity correspond to geometrical aspects of
dimeric zinc chelate complexes, such as interring Caryl-Caryl
distances, the dimer forming and internal Zn-O bond dis-
tances and the (H3C)-O-Caryl-Caryl dihedral angles. These geo-
metrical criteria are promising structural probes to assess
catalyst reactivity from molecular groundstate structures.
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Supplementary material available XYZ coordinates of
computed zinc chelate complexes.Figure 2 Electrostatic potential plot of 2, showing δ– (red at

O) and δ+ (blue at Zn) areas, respectively

Table 2 Geometrical details for the X-ray crystal structure of (2)2[a] and computed dimers (Scheme 4)

interring Zn-O dim. (Å) Zn-Oint. (Å) (H3C)-O-Caryl-Caryl
Caryl-Caryl  (Å) dihedral (deg.)

X-ray (2)2
 [a] 3.50 2.01 1.97 -31.9

(2)2 3.85 2.14 1.91 -50.2
(2-Me)2 3.66 2.15 1.91 -58.1
(2-Bu)2 4.46 2.24 1.88 -65.8
(2-Si)2 4.36 2.21 1.88 -65.5

[a] Due to disorder of Caryl and methoxy groups in the X-ray crystal structure of (2)2, mean values were used to assess
distances and angles
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